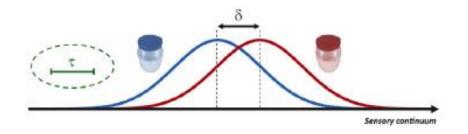

DISCRIMINATION TEST



Jiangnan University
Fang Zhong

DIFFERENCES

Important or Not?

- NOT IMPORTANT: OUT OF CONTROL

 plant variability, hand-made bakery and etc..
- IMPORTANT: UNDER CONTROL


 processed products varying across batches,
 factories, chain stores and etc..

MORE HAPPEN TO...

Daily maintenance

- Quality control
- Ingredient sourcing
- Plant to plant variability
- Shelf life determination

• ..

How can we know whether consumers detect the differences?

Straightforward question:

- Can you tell a difference?
- Is the difference obvious?
- Is the difference confusable?

Those Who Say:

"I Can Tell The Difference"

"I Cannot Tell The Difference"

"I Can Tell The Difference"

"I Cannot Tell The Difference"

Can They?

Yes, They Can

No, They Cannot

No, They Cannot

Yes, They Can

No Surprise

No Surprise

No Surprise

Big Surprise!

FORCED CHOICE!

Discrimination Testing

Definition: Discrimination test, also known as difference tests, are comparative procedures for use in the study of sensory discriminability of similar types of stimuli.

Key Strategy:

Which is the one we asked?

IF YOU CANNOT TELL,
GUESS!



What can we obtain from Discrimination Testing?

• The difference between products is perceived at a previously established level of significance.

POPULATION

Available discrimination tests

Discrimination Testing

Class of test	Test	Samples: inspection phase	Samples: test phase	Task/instructions	Chance probability
Oddity	Triangle	(None)	A, A', B (or A, B, B')	Choose the most different sample	1/3
Matching	Constant reference duo-trio	Ref-A	A, B	Match sample to reference	1/2
•	Balanced reference duo-trio	Ref-A, Ref-B	A, B	Match sample to reference	1/2
	ABX	Ref-A, Ref-B	A (or B)	Match sample to reference	1/2
	Dual standard	Ref-A, Ref-B	A, B	Match both pairs	1/2
Forced choice	Paired comparison	(None)	A, B	Choose sample with most of specified attribute	1/2
	3-AFC	(None)	A, A',B	(Same)	1/3
	n-AFC	(None)	$A_1 - A_{n-1}, B$	(Same)	1/n
	Dual pair	(None)	A, B and A , A'	Choose A, B (different pair)	1/2
Sorting	Two out of five	(None)	A, A', B, B', B''	Sort into two groups	1/10
	4/8 "Harris-Kalmus"	(None)	A_1-A_4, B_1-B_4	Sort into two groups	1/70
Yes/no	Same-different	(None)	Pairs: A, A' or A, B	Choose response: "Same" or "different"	N/A ^a
(Response choice)	A, not-A	Ref-A	A or B	Choose response: "A" or "not-A"	N/A ^a

Nature of difference between products

- □ A given attribute differ between samples
- Which one is stronger than the other one (2-AFC) or N-1 (N-AFC)?

- No given attributes differ between samples
- ☐ Which one is the "different" one from the others? (triangle, duo-trio)

2-AFC

 For the below two tomatoes, which one is more red?

✓ The probability of correct guessing is p=1/2

Triangle test

 Two products are the same, one is different (odd sample)

✓ The probability of correct guessing is p=1/3

How to Interpret the data?

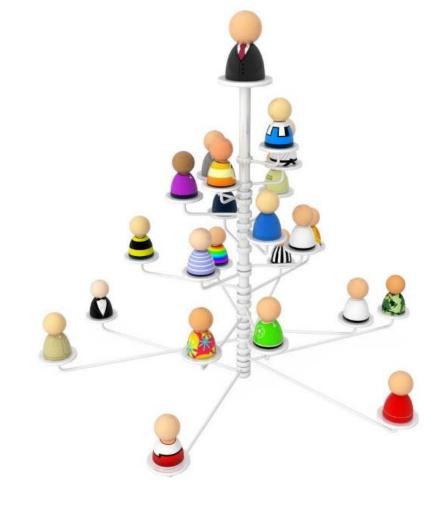
Example: 2-AFC

Two different aged wines

Two glasses of wine

(A is sweeter than B)

Participants were asked to select the one that is sweeter (A)


How many people Do we need?

Sample size

• IDEALLY, The Bigger, The Better

- PRACTICALLY, (24-48)
 - Fixed panel
 - Casual consumers

N = 36

How to Interpret the data?

Example: 2-AFC test

Correct: 20 out of 36

SO is this proportion significantly higher than guessing probability (p=1/2)?

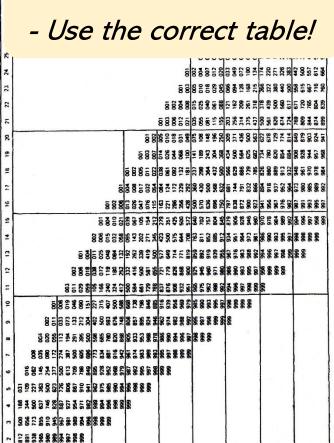


TABLE B: BINOMIAL TABLES p=½

Binomial test

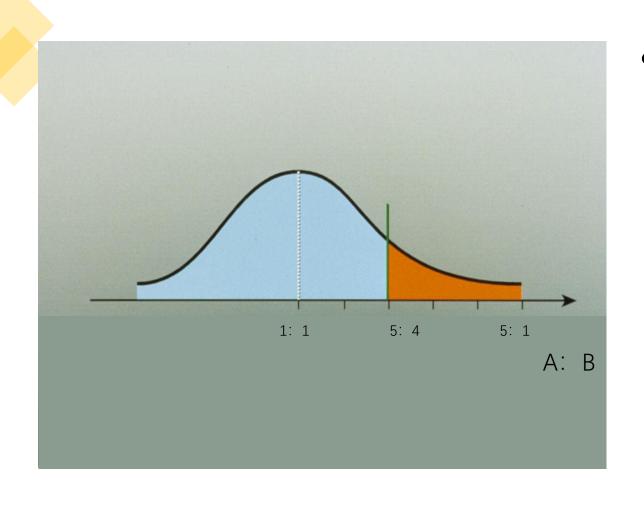
= $\frac{1}{2}$ table corrected for 16/25=115

Appendix G

Binomial test?

Null Hypothesis H_o: No significant difference between

A and B (18 select A & 18 select B)


18 A	18 B	1:1	Most common on H ₀
19 A	17 B		
20 A	16 B	5:4	
21 A	15 B		
22 A	14 B		
30 A	6 B	5:1	
36 A	0 B		Most rare on Ha

Most rare on H₀

Binomial test?

36 participants, 36
selections, 36 events
(p+q)³⁶

p = probability of selecting A = 1/2q= probability of selecting B = 1/2

Table G.4.a Probability of X or More Correct Judgments in n Trials (one-tailed, p = ½)^a

	35 .30
	OF PROPERTY.
1	
3	
1 1	
i i	
1	
i i	
3	
) i	
1	
1	
1	
201	
102	
004 001	
008 003 001	
015 005 002	
025 010 004 001	
040 018 007 002	
061 029 012 005 000?	
088 045 020 008 003 001	
62 094 049 024 010 004 001	
209 128 072 036 017 007 003	
761 168 100 054 027 012 005	
318 215 134 077 040 019 008 003 001	
378 266 174 106 059 030 014 006 007 001	
139 322 220 140 062 044 022 010 004 001	
00 380 271 180 111 063 033 016 007 003 001	
60 440 326 226 146 087 048 024 011 005 002 001	
517 500 383 276 186- 116 068 036 018 008 003 001	
571 558 442 329 231 151 092 052 027 013 006 002 001	
20 615 500 385 280 191 121 072 039 020 009 004 002	001
65 667 557 443 333 235 156 097 056 030 015 007 003	001
104 716 612 500 388 284 196 126 076 043 022 012 005 (002 00
139 760	

^aInitial decimal point has been omitted.

Source: E. B. Roessler et al., Journal of Food Science, 1978, 43, 940-947. Copyright © by Institute of Food Technologists. Reprinted with permission of author and publisher.

20 out of 36 30.9%

Example: Triangle test

Binomial distribution:

To determine whether the result of the study was due to chance alone or whether the panelists actually perceived a difference between the samples.

$$P(y) = \frac{n!}{y! (n-y)!} p^{y} p^{n-y}$$

n = total number of judgments;

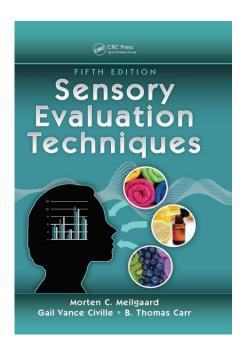
y = total number of correct judgments;

p = probability of making the correct judgment by chance

n!= n*(n-1)*(n-2)...*2*1; P=1/3 for triangles

Table G.5.a. Minimum Numbers of Correct Judgments to Establish Significance at Various Probability Levels for Paired-Comparison and Duo-Trio Tests (one-tailed, p = ½)

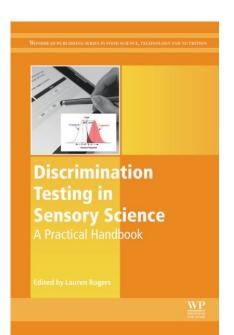
No. of			Pro	bability	levels		
trials (n)	0.05	0.04	0.03	0.02	0.01	0.005	0.00
7	7	7	7	7	7		
8	7	7	8	8	8	8	
9	8	8	8	8	9	9	
10	9	9	9	9	10	10	10
11	9	9	10	10	10	11	11
12	10	10	10	10	11	- 11	12
13	10	11	11	11	12	12	13
14	11	11	11	12	12	13	13
15	12	12	12	12	13	13	14
16	12	12	13	13	14	14	15
17	13	13	13	14	14	15	16
18	13	14	14	14	15	15	16
19	14	14	15	15	15	16	17
20	15	15	15	16	16	17	18
21	15	15	16	16	17	- 17	18
22	16	16	16	17	17	18	19
23	16	17	17	17	18	19	20
24	17	17	18	18	19	19	20
25	18	18	18	19	19	20	21
26	18	18	19	19	20	20	22
27	19	19	19	20	20	21	22
28	19	20	20	20	21	22	23
29	20	20	21	21	22	22	24
30	20	21	21	22	22	23	24
	21	21	22	22	23	24	25
31	22	22		23	24	24	26
32			22			25	26
33	22	23	23	23	24		27
34	23	23	23	24	25	25	27
35	23	24	24	25	25	26	28
36	24	24	25	25 26	26 26	27 27	29
37	24	25	25	26	27	28	29
38	25	25	26				30
39	26	26	26	27	28	28	30
40	26	27	27	27	28	29	
41	27	27	27	28	29	30	31
42	27	28	28	29	29	30	32
43	28	28	29	29	30	31	32
44	28	29	29	30	31	31	33
45	29	29	30	30	31	32	34
46	30	30	30	31	32	33	34
47	30	30	31	31	32	33	35
	31		31	32	33	34	36
48		31	32	33	34	34	36
49	31	32					37
50	32	32	33	33	34	35	43
60	37	38	38	39	40	41	49
70	43	43	44	45	46	47	
80	48	49	49	50	51	52	55
90	54	54	55	56	57	58	61
100	59	60	60	61	63	64	66


Source: E. B. Roessler et al., Journal of Food Science, 1978, 43, 940-947. Copyright © by Institute of Food Technologists. Reprinted with permission of author and publisher.

So, according to the current result (20 out of 36 correct), can we say A and B are significantly different from each other (REJECT H_0)?

p < 0.05 5% leve

Issues:


- -Limited information; only find out if there is a perceptible difference
- -External clues
- -Power (need many judges); tables do not account for subjects pre-screened for their sensory acuity in the category of interest.

- ■Small panel procedure.
- ■Subjects screened for sensory acuity.
- ■Triangle and Duo-Trio are most common and are equally sensitive. Less fatigue with Duo-Trio
- ■Can two 'Control products' pass?
- ■New methods are introduced; keep up with literature.

