Difference Tests

Can the judge discriminate between two confusable products?

Fang Zhong , Yixun Xia Food Sensory Science

- Sensory discrimination tests, also known as difference tests, are comparative procedures for use in the study of sensory discriminability of similar types of stimuli.
- Can you tell a difference?
 If the difference is obvious?
 Only for confusable difference

Why is this important?

- Strategic ingredient sourcing
- Plant to plant variability
- Shelf life determination
- Formulation matching
- Pilot plant versus production plant
- Ad claims ("bottled beer taste in a can")

Discrimination Tests

Two general tests:

- Unspecified (overall difference)
- Specified (attribute specific difference)

Alternatives:

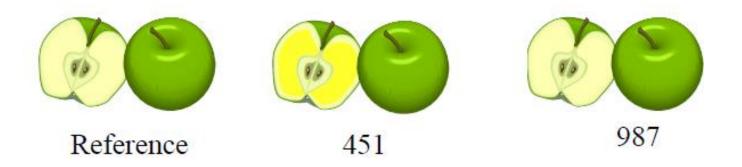
- Signal detection, R-index
- Ranking

Unspecified (overall difference)

Is there a difference between products? the nature of the difference is unknown

Are the two samples perceptibly different?

- will only know "yes" or "no"
- will not know "why"

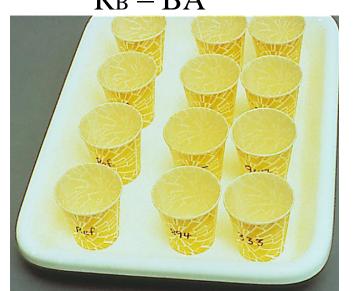

Unspecified (overall difference)

Duo-trio

- balanced reference
- constant reference
- Triangle
- A-not-A
- Tetrad
- Two out of Five

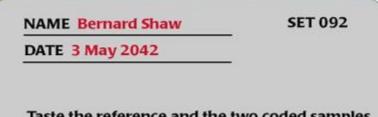
Duo-Trio Test

A reference sample (R) was followed by two unknowns(A&B), one of which is identical to R



- Which one is the same as the standard?
- One-tailed
- The probability of correct guessing is p=1/2

Duo-Trio Test (Counterbalancing Orders)


Balanced Reference

A&B as Reference RA – AB RA – BA RB – AB RB – BA

Constant Reference

A or B as Reference RA-AB RA-BA

Taste the reference and the two coded samples of juice and click on the number of the coded sample which is the same as the reference

729

124

Two products are the same, one is different (odd sample).

- One sample is different from the other two. Indicate the odd sample.
- One-tailed
- The probability of correct guessing is p=1/3

Triangle Test (Counterbalancing Orders)

Six orders:					
AAB	BBA				
ABA	BAB				
ABB	BAA				

NAME Noel Co DATE 3 May 20	SET 094	
Taste the three one will be diffe the different sa	erent. Click on	will be the same, the number of
	753	961

A / Not A Test

- Familiarize subjects with samples 'A' and 'Not a'.
- Present series of products and ask subjects whether they are 'A' or 'Not A'.
- Compare correct and incorrect identifications using the chi-square test.

(Unspecified) Tetrad Test

Four samples, each two are the same.

- sort into two groups of two
- six orders <u>AABB BBAA ABAB BABA ABBA BAAB</u>
- probability of correct guessing: p=1/3

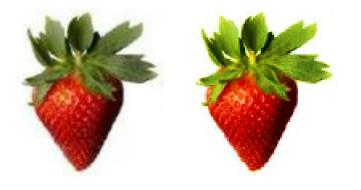
Multi Sample Tests

Sort several samples into two groups

Two-out-of-Five

- A,B,A,B,B (10 serving orders)
- Probability of correct guessing: p>1/10

Specified (attribute specific difference)


Nature of difference specified

- 2-AFC (2-Alternative forced

choice) or Paired comparison

- 3-AFC
- N-AFC

Paired Comparison / 2-AFC

DIRECTIONAL:

- Indicate which sample is sweeter, fruitier more sour, more viscous etc

- Judges must understand what you mean by the attribute you specify

What attributes would ordinary Consumers understand?

MORE: sweet? sour? fruity? crunchy, noisy? spicy? well blended?

bitter? salty? viscous, thick? darker looking? umami? chocolate?

You may need to give standards

3-Alternative Forced Choice

A 3-AFC test is a triangle test where the odd sample is the sample with the higher intensity of the two samples being compared

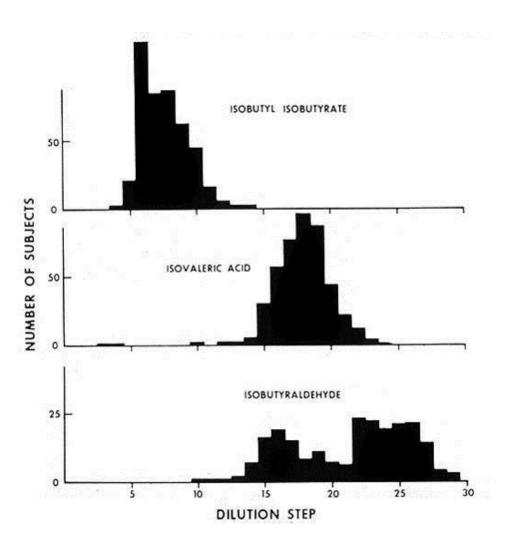
- one sample is sweeter than the other two.
 Indicate the sweeter
- have a prior knowledge of the difference

Applications

ThresholdsDifference testing

- when you want to show that people perceive the difference
- Similarity testing
 - when you want to show that people do not perceive the difference

Thresholds

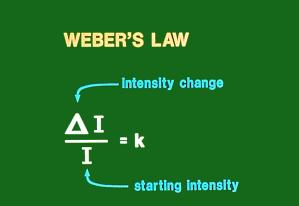

Use for comparative purpose only (there are no absolute measures)

Four types:

- Detection threshold
- Recognition threshold
- Difference threshold = just noticeable difference
- Terminal threshold

Detection Threshold

 Minimum concentration of a stimulus that can be detected


Recognition Threshold

Minimum concentration of a stimulus that can be recognized
 Prone to response bias

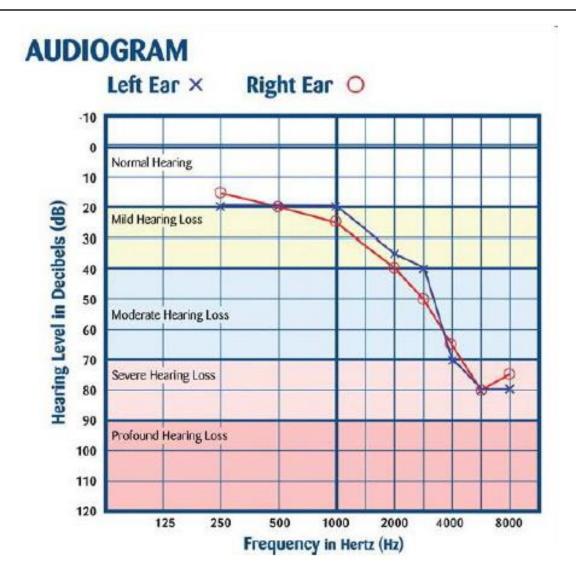
-In what level could be called "sweet"?

Difference Threshold

- Minimum increase in the concentration of a stimulus that can be detected = just noticeable difference
- A function of the original stimulus concentration
 WEBER'S LAW
- Weber's law

Terminal Threshold

The concentration of a stimulus above which there is no increase in perceived intensity


Prone to response bias

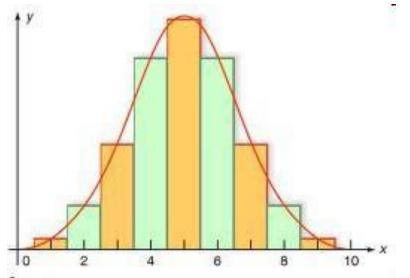
Measures based on difference testsMethods of limits

- Ascending method of limits
- Descending method of limits
- Staircase method
- Up-and-down method
- Method of average error
- Frequency method

Thresholds – Up & Down Method

Type I and Type II Errors

- A Type I Error is one we commit if we reject the Null Hypothesis when it is actually true.
- Concluding that two samples are perceptibly different when they are not!
- The risk of committing a Type I error is called alpha (a)


Difference Testing

Purpose is to show that <u>there is a</u> <u>difference</u> between products.

Minimize alpha, the risk of a Type I error, i.e., incorrectly stating that products are different when they are not.

Difference Testing

- Use any of the difference tests described above (specified or unspecified)
- Compare the number of correct answers to tabulated values based on binomial statistics

© 2003 Encyclopædia Britannica, Inc.

Analysis of Difference testing

Binomial distribution
 Use the correct table!
 Chi-squared distribution
 Z-test calculation

Table 2-Alinimum numbers of correct judgments to establish significance at various probability levels for the triangle test (onetailed, $\rho = 1/31^{\circ}$

Minned, 10	. 1701.		erry and	Street St.	-	- St	Sec. 2		
No. 01	Probability levels								
triats (n)	0.05	0.04	0.03	0.02	0.01	0.005	0.00		
5	(1 43)	S	.	5	6	5			
5	5	5	-6	-6	6	6	1		
7	5	6	- G		6 S.	7	E		
8	6	6	6	6	7	2.5	8		
2	6	7	7	7	7	8	8		
10	7	7	3 7 6	7	8	8			
10	7	2	8	8	. B.	- g	10		
12	8	8	8	8	9	<u>e</u>	10		
13	8	- 18	9	9	9	. 10	- 11		
- 14 · · ·	9	9	•	•	10	10	11		
15	9	9	10	10	10	3.1	12		
16	9	10	10	10	- 11 s	- 10 · ·	12		
17	10	10	10	- 31	11.7	12	13		
1.9	10	11	11	2.1	12	12	13		
19	11	11	11	12	12	13	14		
20	11	33	12	12	13	13	- 14		
21	12	12	12	13	13	14	15		
22	12	12	10	13	14	14	15		
23	12	12	13	13	14	16	16		
24	13	13	13	14	15	15	10		
25	13	14	14	14	16	16	17		
26	14	14	14	15	15	16	17		
27	14	14	15 -	15	16	17	18		
28	15	16	15	16	16	17	10		
29	15	15	16	16	12	17	19		
30	15	10	16	16	.17	18	19		
31	16	16	16	12	18	18	20		
32	16	16	17	12	18	19	20		
33	17	12	17	18	18	19	21		
34	12	17	18	18	19	20	21		
35	17	18	18	19	19	20	22		
36	18	18	18	19	20	20	22		
37	18	18	19	19	20	21	22		
36	19	19	19	20	21	21	23		
39	19	19	20	20	21	22	23		
40	19	20	20	21	221	22	24		
1 - A - A - A - A - A - A - A - A - A -	20	20	20	21	22	20	24		
42	20	20	21	210	22	23	25		
43	20	21	21	22	23	24	28		
- 44	21	21	22	22	23	24	26		
45	21	22	22	23	24	24	26		
46	22	22	22	22	24	26	27		
	- 1552	100 A	and the second second	- 	- 10 to 10	224	1.02		

oExample:

Triangle test (p=1/3)

- N=35 judges
- 19 correct answer
- significant difference (p<0.01)

Z-test

$$z = \frac{(X - np) - 0.5}{\sqrt{npq}}$$

X = number of correct responses n = total number of responses p = probability of chance Triangle test: p = 1/3Duo-trio & pair tests: $p = \frac{1}{2} q = 1 - p$

■See Z-table (area under normal prob. curve) to determine probability of choice being made by chance.

Z-test example

- -N = 40 subjects
- 21 correct answer
- $-Z = [(21 40^{*}(1/3)) 0.5]/[SQRT(40^{*}1/3^{*}2/3)]$
 - = [7.66667 0.5]/ [SQRT (8.888889)]

Probability of this occurring by chance = 1 - 0.9918 = 0.0082

Normal (z) distribution Entry area is $1-\alpha$ under normal curve from $-\infty$ to $z(1-\alpha)$

	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952

Type I and Type II Errors

- A Type II Error is one we commit if we DO NOT reject the Null Hypothesis (i.e. H0: two samples are same) when it is false.
- Concluding that two samples are NOT different when they are perceptibly different!
- The risk of committing a Type II Error is called **beta (β)**, which is the risk of NOT finding a difference when one actually exists

Similarity Testing Situation

- Use when the test objective is to determine that no perceivable difference exists between two products (ingredient or processing change)
- Based on the same tests as in overall difference testing (triangle, duo-trio)
- Minimize beta, the risk of a Type II error,
 i.e., incorrectly stating that samples are similar
 (i.e. NOT different) when they are actually
 different.

Similarity Testing Situation

- Power (=1-beta) is critical in similarity testing
- Pd value: the proportion of discriminators
- Compare the number of correct answers to tabulated values based on binomial statistics
 - (*NOT the same tables as for difference testing)

	P	Proportion Discriminatin						
Critical Values of the Triangle Test for Similarity	N	Beta	20%	30%				
(Maximum Number Correct) as a Function of N,								
Beta, and the Proportion Discriminating	30	.05	_	11				
		.10	10	11				
Accept the null with 100 (1-beta) confidence if the	33	.05	_	12				
number of correct choices does not exceed the tabled value for the allowable proportion of discriminators.		.10	11	13				
Redesigned from M. Meligaard, G.V. Civille, and B.T.	36	.05	_	13				
Carr, Sensory Evaluation Techniques, Copyright 1991, CRC, Boca Raton, FL.		.10	12	14				
	42	.05		16				
		.10	14	17				
	48	.05	16	19				
		.10	17	20				
	54	.05	18	22				
		.10	20	23				
	60	.05	21	25				
		.10	22	26				
	72	.05	26	30				
		.10	27	32				
	84	.05	31	36				
		.10	32	38				
	96	.05	36	42				
		.10	38	44				

Power

- Power is the probability of finding a difference between the two products IF ONE ACTUALLY EXISTS!
- Power
 - depends on
 - Chosen Type I error or alpha (usually 5%)
 - Size of difference between samples
 - Number of panelists

 Discriminators are proportions of people (consumers) who can actually distinguish the differences..

 $P_d = 2P_c - 1 (2 - AFC)$

 $P_d = 1.5P_c - 0.5$ (triangle)

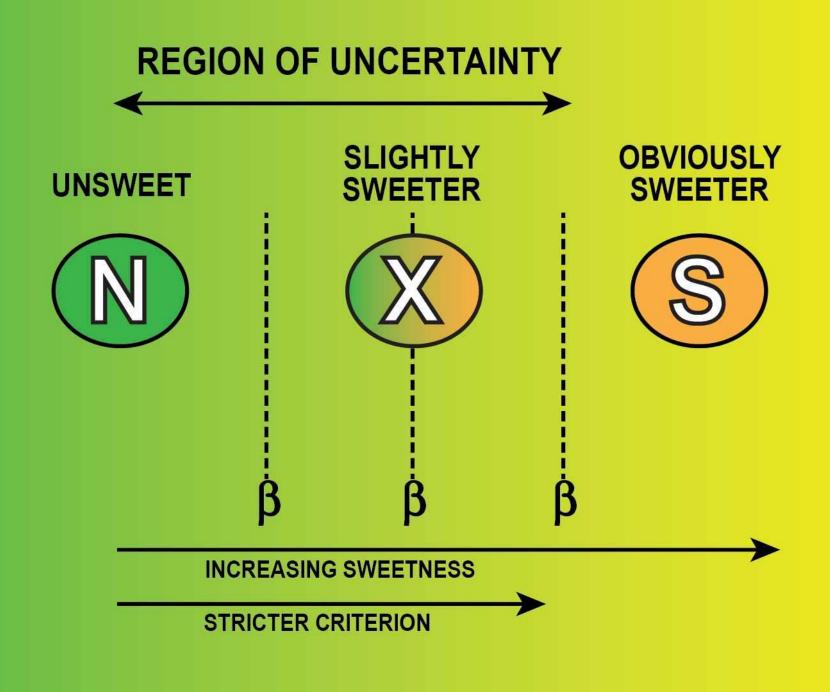
- 'small' effect (only 25% can distinguish)
- 'medium' effect (37.5% can distinguish)
- 'large' effect (50% can distinguish)

Sample Size Calculations

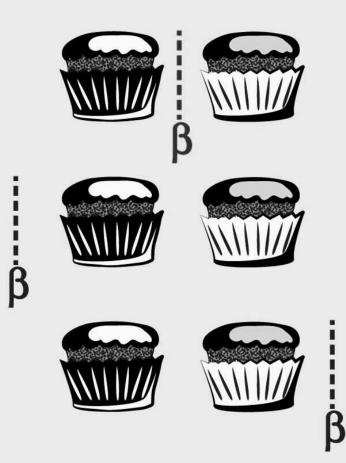
% Discriminators	Triangle (p=1/3)	Duo-Trio (p=1/2)
50	18	31
40	28	50
30	51	92
20	113	211
10	444	853

Alpha=5%; Power=1-beta=90%

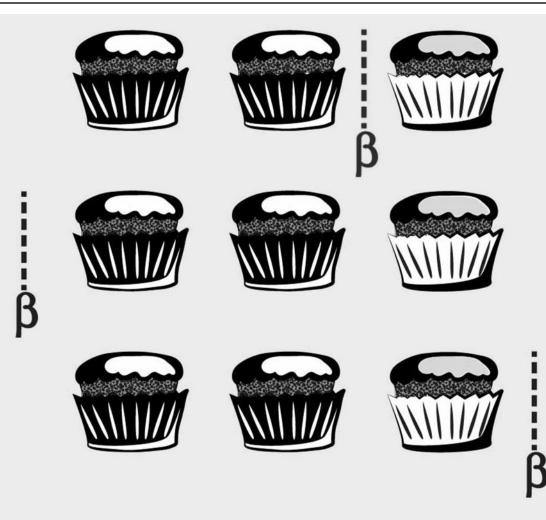
More powerful tests, smaller samples sizes

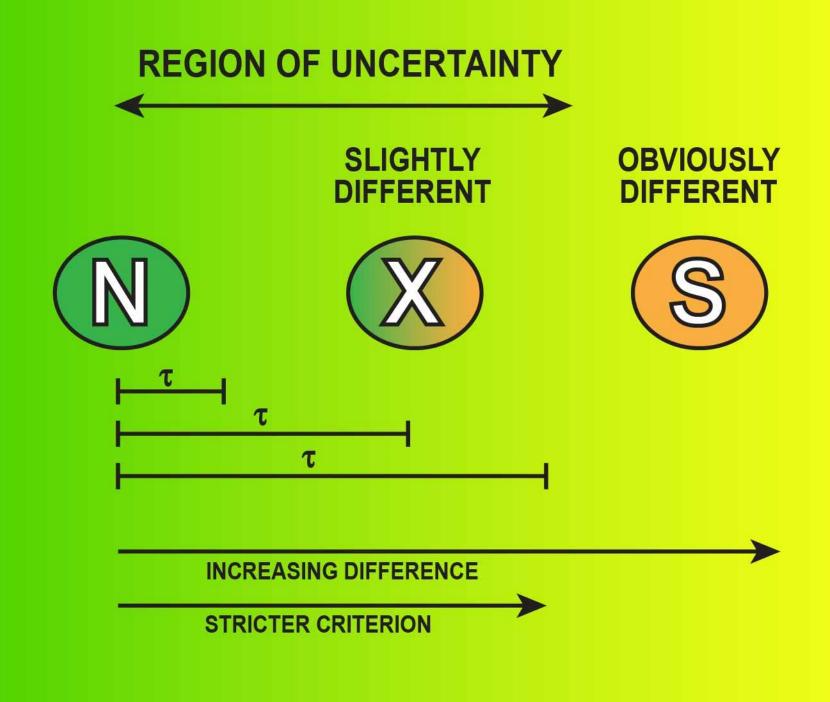

The Gist Of Difference Test

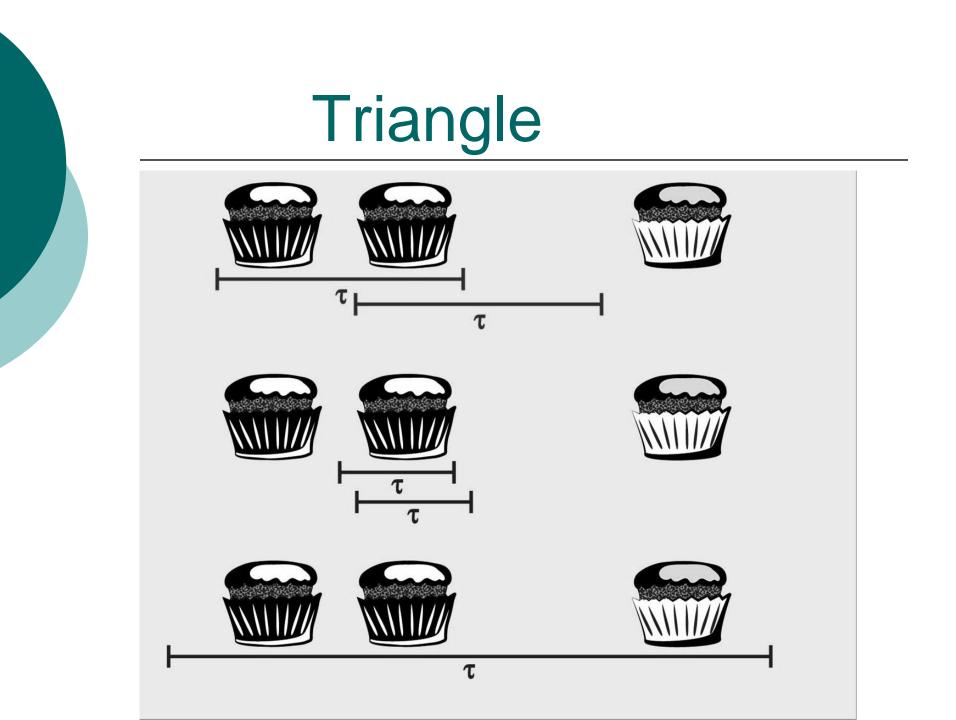
- Difference test is used to find out if two samples are perceptibly different or not
- There are many problems difference tests can and can not solve
- The two main categories of difference tests are overall/unspecified and attributespecific/specified tests
- The tests are not equal in power and some tests are better suited in some situations

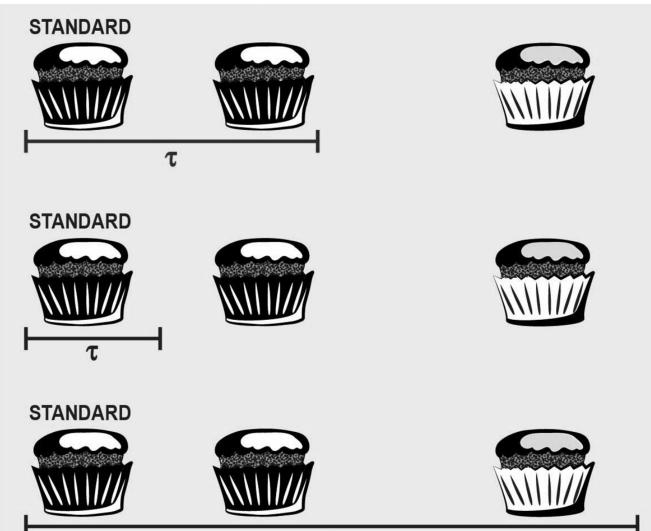

Response Bias

Response Bias


- β-criteria
- т-criteria




2-Alternative Forced Choice 2-AFC


3-Alternative Forced Choice 3-AFC

How to avoid these response biases?

Forced Choice

Manipulate beta criterion into appropriate position or tau criterion to appropriate length

Signal Detection

Do not manipulate criterion. It is allowed to vary freely. Use signal detection theory to compute d'.

Effects on power of different methods

- Cognitive strategies
- Memory
- Cross-over
- Sequence

✓

Thurstonian Model

WHY DO PEOPLE PERFORM BETTER ON SOME DIFFERENCE TESTS THAN OTHERS?

Same Judge

Same Pair of Foods Test Performance Varies

Triangle vs 3-AFC

• Triangle:

- N=33, guessing chance=11
- 15/33 correct; p=0.1 not significant

• **3-AFC:**

- N=33, guessing chance=11
- 23/33 correct; p<0.001 significant

× o	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	868	539	210	045	004	8	-		-	- 1				6	-	1	102					-		-				
	912	649	320	100	018	001										1.20										F		
2	941	737	429	173	045	007									1										- 8			
	961	805	532	259	088	020	003																					
9	974	857	623	350	145	042	008	001		- 1																		
5	983	896	701	441	213	077	020	003							- 1	10					l							
-	988	925	766	527	289	122	039	009	001						- 23						12			00	1111		0	4
2	992	946	819	607	368	178	066	019	004	001											11		10/	33) =	υ.	
3	995	961	861	678	448	241	104	035	009	002					1.0	8					11							
4	997	973	895	739	524	310	149	058	017	004	001										11		23	33	n	<	0 0	001
5	998	981	921	791	596	382	203	088	031	008	002				- 0						11			~~	~ P	1013	v	
6	998	986	941	834	661	453	263	126	050	016	004	001									<u> </u>							
7	999	990	956	870	719	522	326	172	075	027	008	002														1		
B	999	993	967	898	769	588	391	223	108	043	014	004	001													1		
9		995	976	921	812	648	457	279	146	065	024	007	002	0.020	10													
0		997	982	940	848	703	521	339	191	092	038	013	004	001											1	1		
1		998	987	954	879	751	581	399	240	125	056	021	007	002	-										- 3	1		
2		998	991	965	904	794	638	460	293	163	079	033	012	003	001											1		
3		999	993	974	924	831	690	519 576	349	206 254	107	048	019	C06 010	602 003	001												
4		999 999	995 996	980 985	941 954	862 888	737 778	630	406 462	304	178	092	042	016	006	001												
5		333	997	989	964	910	815	679	518	357	220	121	058	025	009	003	001											
6			998	992	972	928	847	725	572	411	266	154	079	036	014	005	002									ł		
8			999	994	979	943	874	765	623	464	314	191	104	050	022	008	003	001										
9			999	996	984	955	897	801	670	517	364	232	133	068	031	013	005	001							4			
ő			999	997	988	965	916	833	714	568	415	276	166	090	043	019	007	002	001						2	1		
1				998	991	972	932	861	754	617	466	322	203	115	059	027	011	004	001	-	1				- 8	1		
2				998	993	978	946	885	789	662	516	370	243	144	070	038	016	006	002	001			÷					
3				999	995	983	957	905	821	705	565	419	285	177	100	051	023	010	004	001			2					
4				999	996	987	965	922	849	744	612	468	330		126	067	033	014	006	002					-		_	
5				999	997	990	973	937	873	779	656	516	376	252	155	067	044	020	009	003	001							
5					998	992	978	949	895	810	697	562	422	293	187	109	058	028	012	005	002	001			1			
7					998	994	963	959	913	838	735	607	469	336	223	135	075	038	018	007	003	001						
в					999	996	987	967	928	863	769	650	515	381	261	164	095	051	025	011	004	002	001					
9					999	997	990	973	941	885	800	689	560	425	301	196	118	066	033	016	007	003	001		8	1		
0			_		999	997	992	979	952	903	829	726	603	470	342	231	144	083	044	021	010	004	001			1		
1						998	994	983	961	920	854	761	644	515	385	268	173	104	057	029	014	006	002	001				
2						999	995	987	968	933	876	791	683	558	428	307	205	127	073	038	019	008	003	001				
3						999 999	996	990 992	974 980	945 955	895 912	820 845	719 753	600 639	471 514	347 389	239 275	153 182	091	050	025	012	005	002	001			
2						999	997 998	992	980	963	912	845	753	677	514	430	313	213	135	053		022	010	003	001	001		
0		11.	-	-	-	333	998	994	984	963	938	86/	811	713	596	430	313	246	135	0/9	043	022	010	004	002	001		
2							999	995	98/	976	949	904	836	745	635	514	392	282	189	119	055	038	019	009	004	002	001	
8							999	997	992	980	958	919	859	776	672	554	433	318	220	142	086	048	025	012	006	002	001	
9							999	998	994	984	965	932	879	803	706	593	473	356	253	168	105	061	033	017	008	003	001	
0							999	998	995	987	972	943	896	829	739	631	513	395	287	196	126	076	042	022	011	005	002	001

Table G.4.c Probability of X or More Correct Judgments in n Trials (one-tailed, p = 1/3)^a

Duo-Trio vs 2-AFC

• **Duo-trio**:

- N=33, guessing chance=16.5 16 or 17
- 20/33 correct; p=0.148 not significant

• **2-AFC:**

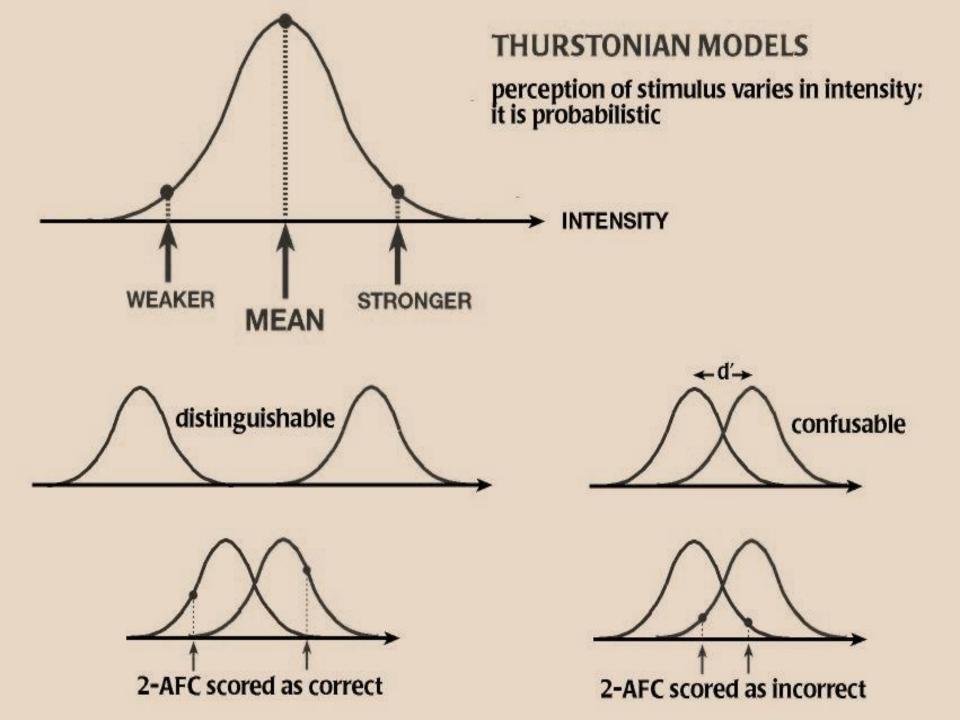
- N=33, guessing chance=16.5 16 or 17
- 26/33 correct; p<0.002 significant

× o		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	71	22	73	24	25	26	21	28	29	30	л	32	13	34	35	.46
1	968	812	500	188	031			12.2										1000			-				-	-	100			-		-		_		-
	984	891	656	344	109	016									- 0																1					
	992	938	773	500	227	067	008																													
	996	965	855	637	363	145	035	004							- 9											0 -										
	998	980	910	746	500	254	090	020	002	10000										- 3								~		-			-			
<u> </u>	999	969	945	878	623	377	172	055	011	001																		71	117	5.5	F	Y =	: 0	1	Δ۶	3
		994	967	887	726	500	774	113	033	006	-				- 0					1										~						
		997	901	947	867	200	500	701	133	019	003	002								1.1									-	10	-		-	~		-
		999	903	021	610	768	605	104	212	090	079		001		- 8														26	13	3	n (< 1		JU	2
			996	982	941	849	606	600	304	151	059	018	004							- 11										. •	-	-				
-	_	_	998	989	967	895	773	598	402	227	105	018	011	002	- 1					- 11						1 5	_									
			999	994	975	978	834	685	500	315	166	072	025	006	001											8										
			999	996	965	952	881	760	593	407	240	119	048	015	004	100															13					
				998	990	968	916	820	676	500	324	180	064	032	010	002				- 33																
-	-	-	2	999	994	979	942	868	748	588	412	752	132	058	021	006	001			-						- C					12					
				999	996	987	961	905	808	668	500	332	192	095	039	013	004									1										
					998	992	974	933	857	738	584	416	262	143	067	026		002								13										
					999 999	995	983	953	895	798	001	500	339	202	105	047	017	005	001																	
					334	998	969	998	9/4	846	729	581 655	419	271	154	076	032	011	003	001																
-	-	-	-		-	999	995	9/6	960	916	837	721	577	423	279	163	084	038	014	005	001															
						999	997	990	974	939	876	779	649	500	351	221	124	061	026	010	003	001				2										
							998	994	982	955	908	828	714	575	425	286	172	092	044	018	006	002														
							999	996	988	969	932	868	771	644	500		229	132	068	031	012	004	001								1					
1		10.0		12	1.22	1	999	597	997	979	951	900	819	708	577	428	292	181	100	049	021	008	003	001	1	10 - I										
							65 3	998	995	965	965	925	859	763	640	500	360	237	141	075			005	002	1.1.1											
								999	997	990	975	945	892	811		570	430	298		108		025	010	004	001	-										
-		_	_					999	998	993	982	960	919	852	757	636	500	364	243	148	081	040	018	007	002	100										
-	_	_				_	S		999	997	997	960	955	912	845	750	632	500	368	250	155	088	045	020	800	003	001	a second								
									999	996	994	986	967	934	879	797	691	566	434	309	203	121	066	033	014	006	007	001			0					
										999	996	990	976	951	906	838	744	629	500	371	256	167	094	049	024	010	004	001								
										999	997	993	983	964	928	872	791	686	564	436	314	209	128	072	036	017	007	003	001	-						
										999	998 999	3750	968	9/3	940	900 923	832	739	625	500	375	261	168	100	054	027	012	005	002	001						
-	-	0.00	-							-	996	004	994	08/	900	941	006	185	224	563 627	437	318	215	134	077	040	019	006	003	001	100					
												999	399	990	978	95.6	918	860	280	678	561	439	200	220	140	082	044	022	010	004	001					
												999	997	993	984	967	937	889	820	729	620	500	380	271	180	111	063	033	016	007	003	001				
												999	998	995	989	976	952	913	854	774	674	560	40	326	226	146	087	048	024	011	005	1.000	001			
				-		1	27427				-	0.000	999	997	992	982	964	932	884	814	724	617	500	383	276	186	116	068	036	018	008	003	001			
	_												999	998	994	987	973	948	908	849	769	671	558	442	329	231	151	092	052	021	013	006	_	001		
													999	998	996	991	980	961	928	879	809	720	615	500	385	280	191	121	072	039	020	009	004	002	001	
														999	997	993	985	970	944	903	844	765	667	557	443	333	235	156	097	056	030	015	007	003	001	
										1				999	998	995	989	978	957	924	874	804	716	612	500	388	284	196	126	076		022	012	005	002	001
															999	997						839	760	664	556	444	336	240	161	101	059	0.12	016	008	003	

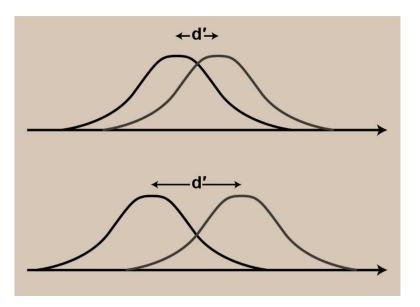
Table G.4.a Probability of X or More Correct Judgments in n Trials (one-tailed, $p = \frac{1}{2}$)^a

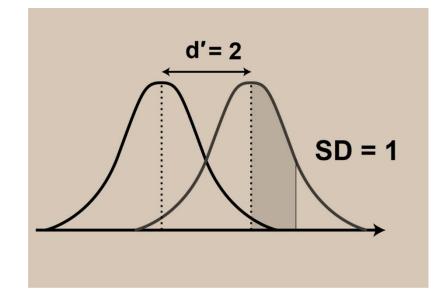
^aInitial decimal point has been omitted. Source: E. B. Roessler et al., Journal of Food Science, 1978, 43, 940-947. Copyright © by Institute of Food Technologists. Reprinted with permission of author and publisher.

WHY DO PEOPLE PERFORM BETTER ON SOME TESTS THAN OTHERS ?



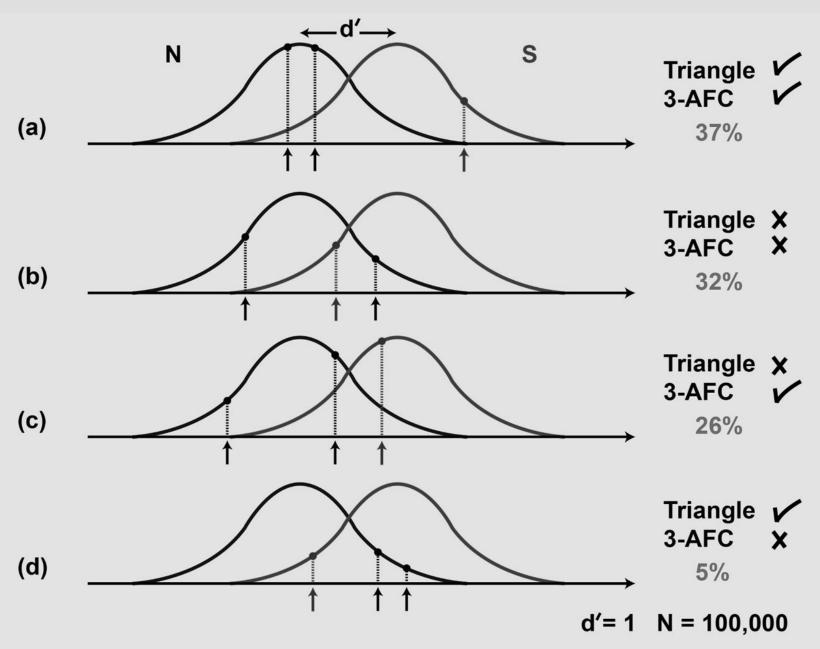
CLARITY OF SIGNAL REACHING THE CENTRAL PROCESSOR

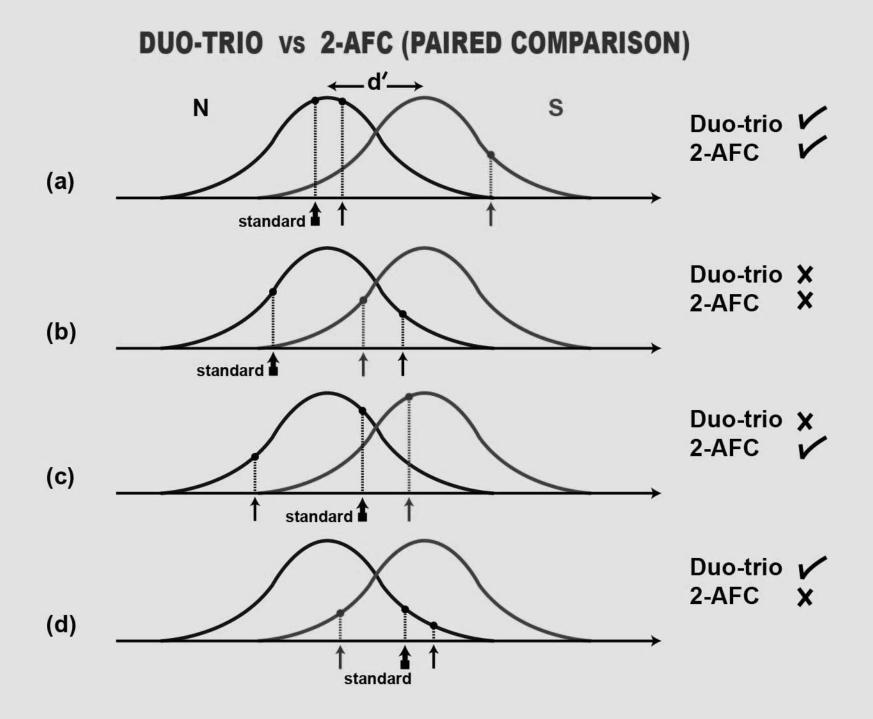

Thurstonian Modeling


Louis Leon Thurstone 1887-1955

d-prime

The distance between the means of the two sensory distributions, measured in standard deviations, is called **d'**




The paradox of discriminatory non-discriminators

Non-discriminators had different judgement when they participated

- Triangle vs 3-AFC
- <u>Duo-trio vs 2-AFC</u>

Triangle vs 3-AFC

PROPORTION CORRECT

d′	TRIANGLE	3-AFC
0.00	33.3%	33.3%
0.43	35%	46%
0.88	40%	60%
1.0	42%	64%
1.52	51%	77%
2.03	61%	87%
2.5	70%	93%

d'

PROPORTION			
CORRECT	TRIANGLE		3-AFC
33.3%	0.00	0.00	
40%	0.88	0.23	
50%	1.47	0.56	
60%	1.98	0.89	
70%	2.50	1.24	
80%	3.13	1.65	
90%	4.03	2.23	

The triangle test is not as efficient as the 3AFC. The difference has to be bigger (bigger d') to get the same proportion of tests correct.

Different cognitive strategies

Comparison of distance of difference

- compare distances along the flavor intensity axis; choose the most distant one
- Comparison of magnitudes or intensities
 - (Skimming)
 - compare input intensities; choose (skim off)
 appropriate one

Thus, different methods have different efficiency

Other effects

Memory

Sequence

Cross-over

••••

Counterbalance the experiments!